• wait never mind. I found the answer... " Heck, no. A black hole has a "horizon," which means a region from which you can't escape. If you cross the horizon, you're doomed to eventually hit the singularity. But as long as you stay outside of the horizon, you can avoid getting sucked in. In fact, to someone well outside of the horizon, the gravitational field surrounding a black hole is no different from the field surrounding any other object of the same mass. In other words, a one-solar-mass black hole is no better than any other one-solar-mass object (such as, for example, the Sun) at "sucking in" distant objects. "
  • 1) Supermassive black holes seem to have an upper limit: "Black holes are thought to exist throughout the universe, with the largest and most massive found at the centers of the largest galaxies. These supermassive black holes have been shown to have masses upwards of one billion times that of our own Sun. But an astronomer studying black holes says there’s an upper limit to how big a black hole can get. Priyamvada Natarajan, an associate professor of astronomy and physics at Yale University has shown that even the biggest of these gravitational monsters can't keep growing forever. Instead, they appear to curb their own growth once they accumulate about 10 billion times the mass of the Sun. These ultra-massive black holes, found at the centers of giant elliptical galaxies in huge galaxy clusters, are the biggest in the known universe. Even the large black hole at the center of our own Milky Way galaxy is thousands of times less massive than these behemoths. But these gigantic black holes, which accumulate mass by sucking in matter from neighboring gas, dust and stars, seem unable to grow beyond this limit regardless of where and when they appear in the universe. "It's not just happening today," said Natarajan. "They shut off at every epoch in the universe." Natarajan’s study is the first time an upper mass limit has been derived for black holes. Natarajan used existing optical and X-ray data of these ultra-massive black holes to show that, in order for those various observations to be consistent, the black holes must essentially shut off at some point in their evolution. One possible explanation, says Natarajan, is that the black holes eventually reach the point when they radiate so much energy as they consume their surroundings that they end up interfering with the very gas supply that feeds them, which may interrupt nearby star formation. The new findings have implications for the future study of galaxy formation, since many of the largest galaxies in the universe appear to co-evolve along with the black holes at their centers. "Evidence has been mounting for the key role that black holes play in the process of galaxy formation," said Natarajan. "But it now appears that they are likely the prima donnas of this space opera." " Source and further information: 2) Small black holes which don't find enough to grow eventually evaporate: "In 1974, Stephen Hawking showed that black holes are not entirely black but emit small amounts of thermal radiation.[50]He got this result by applying quantum field theory in a static black hole background. The result of his calculations is that a black hole should emit particles in a perfect black body spectrum. This effect has become known as Hawking radiation. Since Hawking's result many others have verified the effect through various methods. If his theory of black hole radiation is correct then black holes are expected to emit a thermal spectrum of radiation, and thereby lose mass, because according to the theory of relativity mass is just highly condensed energy (E = mc2). Black holes will shrink and evaporate over time. The temperature of this spectrum (Hawking temperature) is proportional to the surface gravity of the black hole, which in turn is inversely proportional to the mass. Large black holes, therefore, emit less radiation than small black holes. A stellar black hole of 5 solar masses has a Hawking temperature of about 12 nanokelvins. This is far less than the 2.7 K produced by the cosmic microwave background. Stellar mass (and larger) black holes receive more mass from the cosmic microwave background than they emit through Hawking radiation and will thus grow instead of shrink. In order to have a Hawking temperature larger than 2.7 K (and be able to evaporate) a black hole needs to be lighter than the Moon (and therefore a diameter of less than a tenth of a millimeter). On the other hand if a black hole is very small, the radiation effects are expected to become very strong. Even a black hole that is heavy compared to a human would evaporate in an instant. A black hole the weight of a car (~10-24 m) would only take a nanosecond to evaporate, during which time it would briefly have a luminosity more than 200 times that of the sun. Lighter black holes are expected to evaporate even faster, for example a black hole of mass 1 TeV/c2 would take less than 10-88 seconds to evaporate completely. Of course, for such a small black hole quantum gravitation effects are expected to play an important role and could even – although current developments in quantum gravity do not indicate so – hypothetically make such a small black hole stable." Source and further information:
  • As the mass of a black hole increases the gravitational horizon will increase and may eventually draw in all matter even other black holes untill all matter in the universe becomes compacted to a single spot or perhapse more than likely a small number of single masses and maybe these masses could draw together and create the next big bang starting it all over again . just my theory , who knows .

Copyright 2023, Wired Ivy, LLC

Answerbag | Terms of Service | Privacy Policy