ANSWERS: 6
  • lol true but i still agree 2 wrongs dont make a right
  • We r talking about maths and social sciences. but good point. i will mark you up for the creativeness and thought
  • Because nothing is a failure, but a learning technique until you get it right.There is also another way two wrongs do not make a right
  • Rights and wrongs can't be mapped out on graph paper, but positive and negative can. Take a length of three from zero to the right, and a height of four up from zero. That's twelve squares, right? Now take a length of minus three from zero to the left, and a depth of minus four from zero downwards. This also maps out an area of twelve squares--not something that would need to suck in an area of twelve just to equal zero. Now let's say I stole your wallet and you stole mine and both had the same amount of money (and no ID) in them. Nothing positive has happened; in fact, it isn't even zero, since we could both be stubborn, prosecute the other, and each wind up in jail. But if I traded my brown one for your black one, we'd probably both feel we got a good deal.
  • Because when there are two wrongs, they aren't multiplied by each other, they are added to each other. And a negative plus a negative is just more negative! (-5 + -5 = -10)
  • LB123. [ Negative X Negative = Positive ], Proof 1. [ N = Number ] [ Negative number = Negative = (-N) ] [ Positive number = Positive = (+N) = (N) = N ] [ Natural number = Natural ] [ Dead Zero ( 0 ) ] = [ ( 0 ) ] = [ Nothing ] [ Living Zero ( 0 ) ] = [ (+1) - (+1) ] = [ (+N) - (+N) ] = [ (+1) + (-1) ] = [ (+N) + (-N) ] = [ (-1) + (+1) ] = [ (-N) + (+N) ] = [ (-1) - (-1) ] = [ (-N) - (-N) ] [^^^] = [ (-N) = (+N) + (-2N) ] = [ (-N) = { Living Zero ( 0 ) } + (-N) ] = [ (-N) = { Living Zero ( 0 ) } - (+N) ] = [ (-N) = { (+N) - (+N) } - (+N) ] = [ (-N) = (+N) - (+N) - (+N) ] = [ (-N) = (+N) - { (+N) + (+N) } ] = [ (-N) = (+N) - { (+2N) } ] = [ (-N) = (+N) - (+2N) ] = [ (Negative) = (Subtraction of Positives) ] Change Negative for (Subtraction of Positives). [ (-N) = (+N) + (-N) + (-N) = ( 0 ) + (-N) = (+N) + (-2N) = (+N) - (+2N) ] [ (-N) ] = [ (+N) - (+2N) ] [ (-1) = (+1) + (-1) + (-1) = ( 0 ) + (-1) = (+1) + (-2) = (+1) - (+2) ] [ (-1) ] = [ (+1) - (+2) ] [ - (+N) = + (-N) ] [ - (-N) = + (+N) ] [ { - N - N } = { - ( N + N ) ] [ + N - N ] = [ - N + N ] [ ( A - B ) X ( A - B ) ] = [ ( A - B ) X A - ( A - B ) X B ] 2. Proof [^^^] = [ Negative numer X Negative number = Positive number ] = [ Negative X Negative = Positive ] = [ (Negative) X (Negative) = (Positive) ] = [ (-N) X (-N) = (+N) ] = [ { (-N) } X { (-N) } = (+N) ] = [ { (+N) + (-2N) } X { (+N) + (-2N) } = (+N) ] = [ { (+N) - (+2N) } X { (+N) - (+2N) } = (+N) ] = [ { (+N) - (+2N) } X (+N) - { (+N) - (+2N) } X (+2N) = (+N) ] = [ { (+N^2) - (+2N^2) } - { (+2N^2) - (+4N^2) } = (+N) ] = [ { (+N^2) - (+2N^2) } - { (+2N^2) + (-4N^2) } = (+N) ] = [ (+N^2) - (+2N^2) - (+2N^2) - (-4N^2) = (+N) ] = [ (+N^2) - (+2N^2) - (+2N^2) + (+4N^2) = (+N) ] = [ (+N^2) + (+4N^2) - (+2N^2) - (+2N^2) = (+N) ] = [ { (+N^2) + (+4N^2) } - { (+2N^2) + (+2N^2) } = (+N) ] = [ { (+5N^2) } - { (+4N^2) } = (+N) ] = [ (+5N^2) - (+4N^2) = (+N) ] = [ (+N^2) = (+N) ] = [ (+N) = (+N) ] = [ (N) = (N) ] = [ N = N ] 3. Example [^^^] = [ (-1) X (-1) ] = [ {(-1)} X {(-1)} ] = [ {(+1) + (-2)} X {(+1) + (-2)} ] = [ {(+1) - (+2)} X {(+1) - (+2)} ] = [ {(+1) - (+2)} X (+1) - {(+1) - (+2)} X (+2) ] = [ {(+1) - (+2)} - {(+2) - (+4)} ] = [ {(+1) - (+2)} - {(+2) + (-4)} ] = [ (+1) - (+2) - (+2) - (-4) ] = [ (+1) - (+2) - (+2) + (+4) ] = [ (+1) + (+4) - (+2) - (+2) ] = [ {(+1) + (+4)} - {(+2) + (+2)} ] = [ {(+5)} - {(+4)} ] = [ (+5) - (+4) ] = [ (+1) ] = [ (1) ] = [ 1 ] 4. Example [^^^] = [ (-2) X (-3) ] = [ { (-2) } X { (-3) } ] = [ { (+1) + (-3) } X { (+1) + (-4) } ] = [ { (+1) - (+3) } X { (+1) - (+4) } ] = [ { (+1) - (+3) } X (+1) - { (+1) - (+3) } X (+4) ] = [ { (+1) - (+3) } - { (+4) - (+12) } ] = [ { (+1) - (+3) } - { (+4) + (-12) } ] = [ (+1) - (+3) - (+4) - (-12) ] = [ (+1) - (+3) - (+4) + (+12) ] = [ (+1) + (+12) - (+3) - (+4) ] = [ { (+1) + (+12) } - { (+3) + (+4) } ] = [ { (+13) } - { (+7) } ] = [ (+13) - (+7) ] = [ (+6) ] = [ (6) ] = [ 6 ] 5. [ (-2) X (-3) ], The meaning of economic action [ (-2) X (-3) ] = [ One party of Offset, Let us Offset 3 cases in (Debt, Bill $2). ] = [ One party of Offset, Let us Offset (Debt, Bill $6). ] 6. [ (-2) X (-3) ] = [ (Debt, Bill $2) X (-3) ] = [ (Debt, Bill $2), subtract to add 3 times. ] = [ (Debt, Bill $2), subtract to multiply 3 times. ] = [ (Debt, Bill $2), come down to add 3 times. ] = [ (Debt, Bill $2), come down to multiply 3 times. ] = [ 3 cases in (Debt, Bill $2), com down. ] = [ 3 cases in (Debt, Bill $2), Let us offset. ] 7. [^^^] = [ (-2) X (-3) ] = [ - { (-2) + (-2) + (-2) } ] = [ - { (-2) X (3) } ] = [ - { (-6) } ] = [ - (-6) ] = [ + (+6) ] = [ (+6) ] = [ (6) ] = [ 6 ] LB128. Proof of Stendhal, [ (Debt 10,000 franc) X (Debt 500 franc) = (Fortune 5,000,000 franc) ] 0. Conclusion [ Offset of law of obligation ] = [ (-5,000,000) - (-5,000,000) = ( 0 ) ] [^^^] = [ (-10,000) X (-500) = - (-5,000,000) ] = [ - { (-10,000) X (500) } = - (-5,000,000) ] = [ One party of Offset, Let us Offset 500 cases in (Debt, Bill 10,000 franc). ] = [ One party of Offset, Let us Offset (Debt, Bill 5,000,000 franc). ] 1. Proof [^^^] = [ (Debt 10,000 franc ) X (Debt 500 franc) = (Fortune 5,000,000 franc) ] = [ (-10,000) X (-500) = - (-5,000,000) ] = [ { (-10,000) } X { (-500) } = - (-5,000,000) ] = [ { (+1) + (-10,001) } X { (+1) + (-501) } = - (-5,000,000) ] = [ { (+1) - (+10,001) } X { (+1) - (+501) } = (+5,000,000) ] = [ { (+1) - (+10,001) } X (+1) - { (+1) - (+10,001) } X (+501) = - (-5,000,000) ] = [ { (+1) - (+10,001) } - { (+501) - (+5,010,501) } = - (-5,000,000) ] = [ { (+1) - (+10,001) } - { (+501) + (-5,010,501) } = - (-5,000,000) ] = [ (+1) - (+10,001) - (+501) - (-5,010,501) = - (-5,000,000) ] = [ (+1) - { (+10,001) } - (+501) - (-5,010,501) = - (-5,000,000) ] = [ (+1) - { (+1) + (+10,000) } - (+501) - (-5,010,501) = - (-5,000,000) ] = [ (+1) - (+1) - (+10,000) - (+501) - (-5,010,501) = - (-5,000,000) ] = [ (+1) - (+1) + (-10,000) + (-501) - (-5,010,501) = - (-5,000,000) ] = [ (-10,000) + (-501) - (-5,010,501) = - (-5,000,000) ] = [ { (-10,000) + (-501) } - (-5,010,501) = - (-5,000,000) ] = [ { (-10,501) } - (-5,010,501) = - (-5,000,000) ] = [ (-10,501) - (-5,010,501) = - (-5,000,000) ] = [ (-10,501) - { (-5,010,501) } = - (-5,000,000) ] = [ (-10,501) - { (-10,501) + (-5,000,000) } = - (-5,000,000) ] = [ (-10,501) - (-10,501) - (-5,000,000) = - (-5,000,000) ] = [ - (-5,000,000) = - (-5,000,000) ] 2. Discovery [^^^] = [ (Debt 10,000 franc ) X (Debt 500 franc) = (Fortune 5,000,000 franc) ] = [ (-10,000) X (-500) = - (-5,000,000) ] = [ - { (-10,000) X (500) } = - (-5,000,000) ] = [ - (-5,000,000) = - (-5,000,000) ] 3. Proof [^^^] = [ (Debt 10,000 franc ) X (Debt 500 franc) = (Fortune 5,000,000 franc) ] = [ (-10,000) X (-500) = (+5,000,000) ] = [ { (-10,000) } X { (-500) } = (+5,000,000) ] = [ { (+1) + (-10,001) } X { (+1) + (-501) } = (+5,000,000) ] = [ { (+1) - (+10,001) } X { (+1) - (+501) } = (+5,000,000) ] = [ { (+1) - (+10,001) } X (+1) - { (+1) - (+10,001) } X (+501) = (+5,000,000) ] = [ { (+1) - (+10,001) } - { (+501) - (+5,010,501) } = (+5,000,000) ] = [ { (+1) - (+10,001) } - { (+501) + (-5,010,501) } = (+5,000,000) ] = [ (+1) - (+10,001) - (+501) - (-5,010,501) = (+5,000,000) ] = [ (+1) - (+10,001) - (+501) + (+5,010,501) = (+5,000,000) ] = [ (+1) + (+5,010,501) - (+10,001) - (+501) = (+5,000,000) ] = [ { (+1) + (+5,010,501) } - { (+10,001) + (+501) } = (+5,000,000) ] = [ { (+5,010,502) } - { (+10,502) } = (+5,000,000) ] = [ (+5,010,502) - (+10,502) = (+5,000,000) ] = [ (+5,000,000) = (+5,000,000) ] = [ (5,000,000) = (5,000,000) ] = [ 5,000,000 = 5,000,000 ] 4. Offset of law of obligation [^^^] = [ (-10,000) X (-500) = - (-5,000,000) ] = [ - { (-10,000) X (500) } = - (-5,000,000) ] = [ (Debt, Bill 10,000 franc), subtract thing to multiply 500 times. ] = [ (Debt, Bill 10,000 franc), subtract thing to add 500 times. ] = [ (Debt, Bill 10,000 franc), come down thing to multiply 500 times. ] = [ (Debt, Bill 10,000 franc), come down thing to add 500 times. ] = [ One party of Offset, Let us Offset 500 cases in (Debt, Bill 10,000 franc). ] = [ One party of Offset, Let us Offset (Debt, Bill 5,000,000 franc). ] 5. Conclusion [ Offset of law of obligation ] = [ (-5,000,000) - (-5,000,000) = ( 0 ) ] [^^^] = [ (-10,000) X (-500) = - (-5,000,000) ] = [ - { (-10,000) X (500) } = - (-5,000,000) ] = [ One party of Offset, Let us Offset 500 cases in (Debt, Bill 10,000 franc). ] = [ One party of Offset, Let us Offset (Debt, Bill 5,000,000 franc). ] Law of Liuhui Brahmagupta [ N X (-N) ] = [ - ( N X N ) ], [ N X (+N) ] = [ + ( N X N ) ] http://www.youtube.com/user/trapassing http://www.flickr.com/photos/trapassing I cannot english. 1/5. [ Copyright of Image and Sentence ] 2/5. Copyright Notice : Copyright © (Coupdetat.net) 3/5. Do not Editing 4/5. Free Copyright (Use Only) : Personal Homepage and Blog 5/5. Copyright (No Use) : Profit-Making, Enterprise, Government

Copyright 2023, Wired Ivy, LLC

Answerbag | Terms of Service | Privacy Policy