ANSWERS: 1
  • <div class="section1"> Definition

    Congenital heart disease, also called congenital heart defect, includes a variety of malformations of the heart or its major blood vessels that are present at birth.

    Description

    Congenital heart disease occurs when the heart or blood vessels near the heart do not develop properly before birth. Some infants are born with mild types of congenital heart disease, but most need surgery in order to survive. Patients who have had surgery are likely to experience other cardiac problems later in life.

    Most types of congenital heart disease obstruct the flow of blood in the heart or the nearby vessels, or cause an abnormal flow of blood through the heart. Rarer types of congenital heart disease occur when the newborn has only one ventricle, or when the pulmonary artery and the aorta come out of the same ventricle, or when one side of the heart is not completely formed.

    Patent ductus arteriosus

    Patent ductus arteriosus refers to the opening of a passageway—or temporary blood vessel (ductus)—to carry the blood from the heart to the aorta before birth, allowing blood to bypass the lungs, which are not yet functional. The ductus should close spontaneously in the first few hours or days after birth. When it does not close in the newborn, some of the blood that should flow through the aorta then returns to the lungs. Patent ductus arteriosus is common in premature babies, but rare in full-term babies. It also has been associated with mothers who had German measles (rubella) while pregnant.

    Hypoplastic left heart syndrome

    Hypoplastic left heart syndrome, a condition in which the left side of the heart is underdeveloped, is rare, but it is the most serious type of congenital heart disease. With this syndrome, blood reaches the aorta, which pumps blood to the entire body, only from the ductus, which then normally closes within a few days of birth. In hypoplastic left heart syndrome, the baby seems normal at birth, but as the ductus closes, blood cannot reach the aorta and circulation fails.

    Obstruction defects

    When heart valves, arteries, or veins are narrowed, they partly or completely block the flow of blood. The most common obstruction defects are pulmonary valve stenosis, aortic valve stenosis, and coarctation of the aorta. Bicuspid aortic valve and subaortic stenosis are less common.

    Stenosis is a narrowing of the valves or arteries. In pulmonary stenosis, the pulmonary valve does not open properly, forcing the right ventricle to work harder. In aortic stenosis, the improperly formed aortic valve is narrowed. As the left ventricle works harder to pump blood through the body, it becomes enlarged. In coarctation of the aorta, the aorta is constricted, reducing the flow of blood to the lower part of the body and increasing blood pressure in the upper body.

    A bicuspid aortic valve has only two flaps instead of three, which can lead to stenosis in adulthood. Subaortic stenosis is a narrowing of the left ventricle below the aortic valve that limits the flow of blood from the left ventricle.

    Septal defects

    When a baby is born with a hole in the septum (the wall separating the right and left sides of the heart), blood leaks from the left side of the heart to the right, or from a higher pressure zone to a lower pressure zone. A major leakage can lead to enlargement of the heart and failing circulation. The most common types of septal defects are atrial septal defect, an opening between the two upper heart chambers, and ventricular septal defect, an opening between the two lower heart chambers. Ventricular septal defect accounts for about 15% of all cases of congenital heart disease in the United States.

    Cyanotic defects

    Heart disorders that cause a decreased, inadequate amount of oxygen in blood pumped to the body are called cyanotic defects. Cyanotic defects, including truncus arteriosus, total anomalous pulmonary venous return, tetralogy of Fallot, transposition of the great arteries, and tricuspid atresia, result in a blue discoloration of the skin due to low oxygen levels. About 10% of cases of congenital heart disease in the United States are tetralogy of Fallot, which includes four defects. The major defects are a large hole between the ventricles, which allows oxygen-poor blood to mix with oxygen-rich blood, and narrowing at or beneath the pulmonary valve. The other defects are an overly muscular right ventricle and an aorta that lies over the ventricular hole.

    In transposition (reversal of position) of the great arteries, the pulmonary artery and the aorta are reversed, causing oxygen-rich blood to re-circulate to the lungs while oxygen-poor blood goes to the rest of the body. In tricuspid atresia, the baby lacks a triscupid valve and blood cannot flow properly from the right atrium to the right ventricle.

    Other defects

    Ebstein's anomaly is a rare congenital syndrome that causes malformed tricuspid valve leaflets, which allow blood to leak between the right ventricle and the right atrium. It also may cause a hole in the wall between the left and right atrium. Treatment often involves repairing the tricuspid valve. Ebstein's anomaly may be associated with maternal use of the psychiatric drug lithium during pregnancy.

    Brugada syndrome is another rare congenital heart defect that appears in adulthood and may cause sudden death if untreated. Symptoms, which include rapid, uneven heart beat, often appear at night. Scientists believe that Brugada syndrome is caused by mutations in the gene SCN5A, which involves cardiac sodium channels.

    Infants born with DiGeorge sequence can have heart defects such as a malformed aortic arch and tetralogy of Fallot. Researchers believe DiGeorge sequence most often is caused by mutations in genes in the region 22q11.

    Marfan syndrome is a connective tissue disorder that causes tears in the aorta. Since the disease also causes excessive bone growth, most Marfan syndrome patients are over six feet tall. In athletes, and others, it can lead to sudden death. Researchers believe the defect responsible for Marfan's syndrome is found in gene FBN1, on chromosome 15.

    About 32,000 infants are born every year with congenital heart disease, which is the most common birth defect. About half of these cases require medical treatment. More than one million people with heart defects are currently living in the United States.

    Causes and symptoms

    In most cases, the causes of congenital heart disease are unknown. Genetic and environmental factors and lifestyle habits can all be involved. The likelihood of having a child with a congenital heart disease increases if the mother or father, another child, or another relative had congenital heart disease or a family history of sudden death. In 2004, researchers identified a chromosome deletion that might explain some of the genetic causes of certain congenital heart diseases.

    Viral infections, such as German measles, can produce congenital heart disease. Women with diabetes and phenylketonuria (an inherited liver condition also called PKU) also are at higher risk of having children with congenital heart defects. Many cases of congenital heart disease result from the mother's excessive use of alcohol or taking illegal drugs, such as cocaine, while pregnant. The mother's exposure to certain anticonvulsant and dermatologic drugs during pregnancy also can cause congenital heart disease. There are many genetic conditions, such as Down syndrome, which affect multiple organs and can cause congenital heart disease.

    Symptoms of congenital heart disease in general include: shortness of breath, difficulty feeding in infancy, sweating, cyanosis (bluish discoloration of the skin), heart murmur, respiratory infections that recur excessively, stunted growth, and limbs and muscles that are underdeveloped.

    Symptoms of specific types of congenital heart disease are as follows:

    • Patent ductus arteriosus: quick tiring, slow growth, susceptibility to pneumonia, rapid breathing. If the ductus is small, there are no symptoms.
    • Hypoplastic left heart syndrome: ashen color, rapid and difficult breathing, inability to eat.
    • Obstruction defects: cyanosis (skin that is discolored blue), chest pain, tiring easily, dizziness or fainting, congestive heart failure, and high blood pressure.
    • Septal defects: difficulty breathing, stunted growth. Sometimes there are no symptoms.
    • Cyanotic defects: cyanosis, sudden rapid breathing or unconsciousness, and shortness of breath and fainting during exercise.

    Diagnosis

    Echocardiography and cardiac magnetic resonance imaging (MRI) are used to confirm congenital heart disease when it is suggested by the symptoms and physical examination. An echocardiograph will display an image of the heart that is formed by sound waves. It detects valve and other heart problems. Fetal echocardiography is used to diagnose congenital heart disease in utero, usually after 20 weeks of pregnancy. Between 10 and 14 weeks of pregnancy, physicians also may use an ultrasound to look for a thickness at the nuchal translucency, a pocket of fluid in back of the embryo's neck, which may indicate a cardiac defect in 55% of cases. Cardiac MRI, a scanning method that uses magnetic fields and radio waves, can help physicians evaluate congenital heart disease, but is not always necessary. Physicians also may use a chest x ray to look at the size and location of the heart and lungs, or an electrocardiograph (ECG), which measures electrical impulses to create a graph of the heart beat.

    In children and adults, computed tomography (CT) and MRI are the preferred methods to visualize congenital heart disease. Contrast may be added to enhance the image for the radiologist.

    Treatment

    Congenital heart disease is treated with drugs and/or surgery. Drugs used include diuretics, which aid the baby in excreting water and salts, and digoxin, which strengthens the contraction of the heart, slows the heartbeat, and removes fluid from tissues.

    Surgical procedures seek to repair the defect as much as possible and restore circulation to as close to normal as possible. Sometimes, multiple surgical procedures are necessary. Surgical procedures include: arterial switch, balloon atrial septostomy, balloon valvuloplasty, Damus-Kaye-Stansel procedure, Fontan procedure, pulmonary artery banding, Ross procedure, shunt procedure, and venous switch or intra-atrial baffle.

    Arterial switch, to correct transposition of the great arteries, involves connecting the aorta to the left ventricle and connecting the pulmonary artery to the right ventricle. Balloon atrial septostomy, also done to correct transposition of the great arteries, enlarges the atrial opening during heart catheterization. Balloon valvuloplasty uses a balloon-tipped catheter to open a narrowed heart valve, improving the flow of blood in pulmonary stenosis. It is sometimes used in aortic stenosis. Transposition of the great arteries also can be corrected by the Damus-Kaye-Stansel procedure, in which the pulmonary artery is cut in two and connected to the ascending aorta and the farthest section of the right ventricle.

    For tricuspid atresia and pulmonary atresia, the Fontan procedure connects the right atrium to the pulmonary artery directly or with a conduit, and the atrial defect is closed. Pulmonary artery banding, narrowing the pulmonary artery with a band to reduce blood flow and pressure in the lungs, is used for ventricular septal defect, atrioventricular canal defect, and tricuspid atresia. Later, the band can be removed and the defect corrected with open-heart surgery.

    To correct aortic stenosis, the Ross procedure grafts the pulmonary artery to the aorta. For tetralogy of Fallot, tricuspid atresia, or pulmonary atresia, the shunt procedure creates a passage between blood vessels, sending blood into parts of the body that need it. For transposition of the great arteries, venous switch creates a tunnel inside the atria to re-direct oxygen-rich blood to the right ventricle and aorta and venous blood to the left ventricle and pulmonary artery.

    When all other options fail, some patients may need a heart transplant. Children with congenital heart disease require lifelong monitoring, even after successful surgery. The American Heart Association recommends regular dental check-ups and the preventive use of antibiotics to protect patients from heart infections, or endocarditis. However, a 2003 study reported that preventive antibiotics are underused in people with congenital heart disease. Many patients did not understand the risk of endocarditis. Since children with congenital heart disease have slower growth, nutrition is important. Physicians also may limit their athletic activity.

    Prognosis

    The outlook for children with congenital heart disease has improved markedly in the past two decades. Many types of congenital heart disease that would have been fatal now can be treated successfully. Because many children with these defects survive into adulthood, physicians and patients are reminded that the patients will require continued medical observation as they mature. Research on diagnosing heart defects when the fetus is in the womb may lead to future treatment to correct defects before birth. Promising new prevention methods and treatments include genetic screening and the cultivation of cardiac tissue in the laboratory that could be used to repair congenital heart defects. As scientists continue to advance the study of genetics, they also will better understand genetic causes of many congenital heart diseases. For example, scientists just discovered a potential cause of atrioventricular canal defects in the fall of 2003.

    Source: The Gale Group. Gale Encyclopedia of Medicine, 3rd ed.

  • Copyright 2023, Wired Ivy, LLC

    Answerbag | Terms of Service | Privacy Policy