ANSWERS: 1
  • Evaporation is the process by which molecules in a liquid state (e.g. water) spontaneously become gaseous (e.g. water vapor), without being heated to boiling point. It is the opposite of condensation. Generally, evaporation can be seen by the gradual disappearance of a liquid, when exposed to a significant volume of gas. The reason a liquid evaporates is that its molecules are all in motion in nearly random directions and speeds, and the energy of that movement can be compared to the heat needed to boil that liquid. On average, the molecules do not have enough energy to escape from the liquid, or else the liquid would turn into vapor quickly. When the molecules collide, they transfer energy to each other in varying degrees, based on how they collide. Sometimes the transfer is so one-sided that one of the molecules ends up with enough energy to be considered past the boiling point of the liquid. If this happens near the surface of the liquid it may actually fly off into the gas and thus "evaporate". http://en.wikipedia.org/wiki/Evaporation Boiling, a type of phase transition, is the rapid vaporization of a liquid, which typically occurs when a liquid is heated to its boiling point, the temperature at which the vapor pressure of the liquid is equal to the pressure exerted on the liquid by the surrounding environmental pressure. Thus, a liquid may also boil when the pressure of the surrounding atmosphere is sufficiently reduced, such as the use of a vacuum pump or at high altitudes. Boiling occurs in three characteristic stages, which are nucleate, transition and film boiling. These stages generally take place from low to high surface temperatures, respectively. Nucleate boiling is characterized by the incipience and growth of bubbles on a heated surface, which rise from discrete points on a surface, whose temperature is only slightly above the liquid’s saturation temperature. In general, the number of nucleation sites are increased by an increasing surface temperature. An irregular surface of the boiling vessel (i.e. increased surface roughness) can create additional nucleation sites, while an exceptionally smooth surface, such as glass, lends itself to superheating. Under special conditions, a heated liquid may show boiling delay when heated over its boiling point, by starting to boil suddenly and violently. When the surface temperature reaches a maximum value, the critical superheat, vapor begins to form faster than liquid can reach the surface. Thus, the heated surface suddenly becomes covered with a vapor layer. Because of the vapor layer’s lower thermal conductivity, this vapor layer insulates the surface. This condition of a vapor film insulating the surface from the liquid characterizes film boiling. Transition boiling may be defined as the unstable boiling, which occurs at surface temperatures between the maximum attainable in nucleate and the minimum attainable in film boiling. The formation of bubbles in a heated liquid is a complex physical process which often involves cavitation and acoustic effects, such as the broad-spectrum hiss one hears in a kettle not yet heated to the point where bubbles roil the surface. http://en.wikipedia.org/wiki/Boiling The three important differences are that evoparation does not involve formation of bubbles, convective streams from bottom layers to top layers and surface steam vapours.

Copyright 2023, Wired Ivy, LLC

Answerbag | Terms of Service | Privacy Policy